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Instability threshold of a photorefractive pattern-forming system
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We report on the detailed experimental determination of the threshold for modulational instability in a
photorefractive single-mirror feedback system using a Fourier control technique. Results are compared to
analytical predictions and a disagreement for the experimentally significant multiple pattern region is found.
Implications for the generation of nonhexagonal two-dimensional patterns are discussed.
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I. INTRODUCTION

The spontaneous formation of two-dimensional periodic
patterns out of a homogeneous initial state is a widely spread
phenomenon in the natural sciences [1], observed in as di-
verse disciplines as chemistry, biology, hydrodynamics,
solid-state physics, and nonlinear optics. A common feature
of pattern forming systems is the existence of a control pa-
rameter threshold, where a homogeneous state becomes un-
stable against a periodic perturbation with a well defined
wave number. Beyond this threshold, the perturbation grows
and a periodic pattern arises. Due to their periodicity, the
emerging structures can be characterized by only a few
modes in Fourier space.

The connection between the instability of the homoge-
neous state and the control parameter can be obtained by
means of a linear stability analysis. The result of this analysis
is a threshold value for the control parameter in dependence
on the wave number. Whereas the linear stability analysis is
an often used tool to investigate a pattern forming system,
the corresponding experimental determination of the instabil-
ity thresholds is challenging. Whenever the homogeneous
state is destabilized by increasing the control parameter in
experiment, the pattern corresponding to the wave number
with the lowest threshold grows. Therefore it is not possible
to directly determine the thresholds for modulations with dif-
ferent wave numbers. However, this problem can be solved
by confining the system response to a selectable wave num-
ber range. In this case the threshold value of any wave num-
ber can be determined by changing the control parameter
until the homogeneous state changes into a periodic pattern
with the selected wave number.

In optics, Fourier space is directly accessible through im-
aging using a single lens. With the help of a filter in Fourier
space, it is possible to suppress all wave numbers except the
one under consideration. Pesch e al. used this method for
the first time to measure the marginal stability curve of a
pattern forming optical system with sodium vapor as the
nonlinear medium [2].
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II. THEORETICAL DESCRIPTION

A. The single mirror feedback system

Spontaneous formation of hexagonal patterns in the pho-
torefractive feedback system considered in this paper was
first reported by Honda in 1993 [3]. The basic setup for
investigating pattern formation in photorefractive media [4]
is the single mirror feedback system (Fig. 1). The photore-
fractive medium is illuminated by a focused laser beam
which, after passing it once, is reflected back by a mirror.
The result of the interference of the two counterpropagating
beams is a modulation of the refractive index of the medium
due to the photorefractive effect. A periodically modulated
index of refraction leads to the coupling of the energy and
phases of the two beams. Above a certain threshold, two-
beam coupling leads to a spontaneous transverse modulation
of the beams and therefore to the generation of patterns.

In contrast to many other optical nonlinear pattern form-
ing systems, the photorefractive medium is not a thin slice,
but a bulk medium. Due to the nonlinear propagation of light
in the bulk medium, additional nonlocal effects must be
taken into account, which considerably complicate the theo-
retical treatment of this system. On the other hand, the con-
siderable propagation within the nonlinear medium is a char-
acteristic feature of the photorefractive medium, possibly
responsible for the multitude of nonhexagonal patterns.

In one possible arrangement, the mirror is placed directly
behind the crystal. However, we take advantage of an
equivalent virfual mirror, created by two imaging lenses in
the feedback path [5]. In this configuration, access to the
Fourier plane of the feedback arm is available, which we will
utilize for determination of the threshold curves. Addition-
ally, negative feedback distances are accessible, where the
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FIG. 1. Two wave-mixing configuration with a feedback mirror
M. A, is the pump and A, is the reflected beam, Q is the refractive
index grating amplitude, z indicates the direction of propagation. /
is the medium length and L is the distance from the crystal face to
the feedback mirror.
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FIG. 2. Three example patterns observable in the photorefrac-
tive feedback system (Fourier space). The squeezed hexagon and
the square pattern are found in the multiple pattern region whereas
the hexagonal pattern is dominantly observed in the remaining pa-
rameter space.

virtual mirror plane is located inside of the crystal. The no-
tion “inside” must be taken with caution in a nonlinear me-
dium, as the medium beyond the mirror plane still affects the
propagating waves. For mirror positions near the center of
the crystal, different types of patters like squares or hexagons
are observed (Fig. 2). In this parameter range called multiple
pattern region [5], multiple stable solutions are found to be
available to the system for a single set of parameters. Honda
et al. reported a disagreement between the transverse scale of
the patterns predicted by the linear stability analysis and ex-
perimental data for the multiple pattern region [6]. From this
point of view it is crucial to experimentally determine the
marginal stability curves for this system.

B. Model equations

The model for photorefractive wave mixing through the
formation of a reflection grating is based on the charge trans-
port model of Kuktharev ef al. [7].

The single mirror feedback system is described by three
differential equations [8,9]. The wave mixing process in the
crystal is governed by the first two equations which are
slowly varying envelope equations for the two lightfields A;
and A,. In this case, z is the propagation coordinate scaled by
the crystal length /, and A | is the transverse Laplacian scaled
by the beam waist w,

A +ifA A=~ QA,,
—d A, +ifA Ay=Q7Ay,

AA,

— (1)
2 2
1
|A|* + A,

NdQ0+Q =y
The third equation describes the temporal evolution of the
complex amplitude of the reflection grating, where (/) is the
intensity dependent relaxation time. The crucial assumption
in (1) is that the time development of the beam envelopes is
slaved to the grating amplitude, because of its slow evolu-
tion. The parameter 7y is the photorefractive coupling con-
stant which takes the role of the control parameter.

C. Linear stability analysis

The linear stability analysis was first performed by Honda
and Banerjee [10] and extended by Schwab [11] for the case
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of input beams with different frequencies. In this paper, we
are only concerned with the case of degenerate beam fre-
quencies. Starting from (1) for one transverse dimension
(k, =k,) we introduce the ansatz

— A0 + . - .
Aj(z,x) =Aj[1 + A] exp(ik,x) + A} exp(= ik,x)],  (2)

consisting of the plane wave solutions A? and a perturbation
in the form of weak sidebands at a transverse wave number
k.. In order to guarantee a small pertubation we choose A;T
<1 and A; <1. The incident beams have no sidebands and
therefore we set

A7(0)=45(0)=0. (3)

With the help of the boundary conditions
A3 (D) = exp(=2ikld)AT(1), (4)
A3(1) = exp(=2ik Id)AT (1) (5)

the feedback mirror is taken into account. Here [ is the length
of the photorefractive crystal, k,=k>/(2kyn) is the normal-
ized transverse wave number and d=nyL/[ is the normalized
position of the virtual mirror. L is the distance between the
feedback mirror and the backface of the crystal (Fig. 1).

The linear stability analysis leads to a threshold condition
of the form

k4l 1
cos(wl)cos(k,l) + = sin(wi)sin(k,l) + i sin(wl)cos[k,I(1
wi 2wl

+2d)]=0 (6)

with wil =\J'(kdl)2—(%yl)2. All parameters are chosen dimen-
sionless to facilitate the comparison between theory and ex-
periment.

The threshold condition (6) depends on the photorefrac-
tive coupling strength, the position of the virtual mirror and
due to k,/ on the transverse wave number k, of the pertuba-
tion. For a given normalized mirror position d, Eq. (6) yields
the critical threshold value of yI., where the homogeneous
state becomes unstable against a pertubation with the wave
number k, . For a fixed mirror distance d, the threshold con-
dition reduces to the form v/ (k,l)|,=0. The evaluation of
this formula leads to the curve of marginal stability for the
chosen d, depicted in Fig. 3 for d=0.

The curve displays an absolute minimum followed by
some local minima. In an experiment without Fourier filter-
ing, the wave number corresponding to the absolute mini-
mum appears. Because ! (k,/)|,=0 depends on the mirror
position, the wave numbers of the minima will change for
different d. To illustrate this, the wave number of the abso-
lute and the first local minimum are plotted against the mir-
ror position in Fig. 4. The curves are symmetric with respect
to the center of the crystal (d=-0.5).

III. EXPERIMENT
A. Experimental setup

The photorefractive single feedback system depicted in
Fig. 5 consists of an iron-doped KNbOj crystal with a length
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FIG. 3. Linear stability analysis, threshold curve for the virtual
mirror located at the end of the crystal d=0.0.

of /=5 mm illuminated by a focused laser beam, and a feed-
back assembly with a moveable mirror (M2). A frequency
doubled Nd:YAG laser operating at 532 nm cw with an out-
put power of 100 mW is used as a coherent light source.
Variable attenuation is provided by a half-wave plate and a
polarizing beam splitter (p.BS). The optical diode (o0.d.) pre-
vents back reflection of light into the laser. The laser is fo-
cused into the crystal using a lens (L3) with a focal length of
450 mm with the resulting focus having about 300 um. An
additional half-wave plate (A\/2) is used to adjust the polar-
ization of the beam entering the crystal, which directly af-
fects the photorefractive coupling strength 7/ by selection of
the electrooptic coefficients. The crystal is tilted by about
5 degrees to avoid additional reflection at the crystal faces.
The crystallographic ¢ axis is oriented to provide amplifica-
tion of the backpropagating beam. Instead of placing the
feedback mirror directly behind the crystal, a 4f setup (L4
and L5) is used, which is completely equivalent to a feed-
back mirror positioned directly behind the crystal [11] and
effectively creates a virtual mirror. Using the 4f imaging
setup is convenient as it allows for virtual mirror positions

normalized wave number kgl

-2 -1.5 -1 -0.5 o] 0.5 1 1.5
normalized mirror distance d
FIG. 4. Linear stability analysis, theoretical values for the

minima of the threshold curves for varying values of the mirror
position.
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FIG. 5. Scheme of the experimental setup used to investigate
pattern formation in the single mirror feedback configuration.

inside the KNbO; crystal and gives access to the Fourier
plane F where the Fourier filter can be placed.

B. The Fourier filter

The Fourier filter used to determine the marginal stability
threshold needs to fulfill two tasks. On the one hand, it con-
fines the system to one dimension by the slit mask depicted
in Fig. 6(a). On the other hand, the wave number k,/,=0 and
the two symmetric sidebands with +k,/ and —k,/ must be able
to pass the filter. To this end, the upper mask in Fig. 6(a) is
combined with the lower one [Fig. 6(b)]. By laterally shifting
the two masks against each other, only a small range of side-
bands around a specific wave number is transmitted through
the filter. The development of the intensity of the selected
sidebands is observed by a photodiode (Fig. 5) as the control
parameter is slowly increased. In the homogeneous system
state only the wave number k,/,=0 can be seen in the Fourier
plane and only a low noise level is detected in the sideband
photodiode. When the value of the control parameter is in-
creased beyond the threshold for the chosen k,/, the power in
the sidebands will grow. Repeating this procedure for all
available wave numbers, we can determine the complete
threshold curves for the onset of modulational instability.

C. Experimental results

Two examples of the experimentally obtained thresholds
in dependence on the normalized transverse wave numbers

(a) (b) (c)
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FIG. 6. (a) The two components of the Fourier filter, (b) ar-
rangement of the two masks in the experiment, (¢) view from a

direction perpendicular to the z axis, illustrating that all but a se-
lected band of wave numbers are blocked by the filter.
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FIG. 7. Experimental threshold data superimposed on analytical
prediction. Mirror position at the back face of the crystal (outside of
multiple pattern region). Wave numbers of minima agree reasonably
well, the actual coupling strength values do not fit.

are depicted in Figs. 7 and 8. The horizontal line marks the
highest photorefractive coupling strength (yl) provided by
the crystal used in the experiments.

For mirror positions outside of the medium, the absolute
minima of the experimentally obtained 7/ values are in
agreement with the theory (not shown). Due to the fact that
the absolute value of 7yl, cannot be determined exactly, the
absolute minimum of the numerical data is used to calibrate
the experimental data given in this paper, in order to facili-
tate comparison of the marginal stabiliy curves. However, the
absolute value of the photofractive coupling strength is with-
out significance to the work presented in this paper. Only
relative values of y/ and the wave numbers of the minima are
relevant.

At the mirror position d=0 (Fig. 7) the sequence of the
minima is in agreement with the theory. But when the mirror
is moved into the crystal, the situation changes. At d=
—-0.63 (Fig. 8) there is a significant difference between the
shape of the curve formed by the measured points and the
threshold curve.
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normalized wave number kgl

FIG. 8. Experimental threshold data superimposed on analytical
prediction. Mirror position within the front third of the crystal
(within the multiple pattern region). No quantitative agreement
exists.
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FIG. 9. Wave numbers of the threshold minima, analytical and
experimental data. The precision of the mirror position is better than
+0.005 (=10 wm). A disagreement between both data sets is found
for mirror positions mainly within the crystal (—1.5<d<0).

To clarify the influence of the virtual mirror position, the
first two wave number minima of the thresholds are plotted
against the mirror position d (Fig. 9). The black squares de-
note the measured values whereas the lines are the theoreti-
cal curves repeated from Fig. 4. It is remarkable, that in
experiment the symmetry of the curves in respect to the cen-
ter of the crystal is broken. While the analytical threshold
decreases from the crystal center towards the backface, the
measured values increase. Wave numbers larger than k,l
=13 were not accessible in the experiment. The measured
values near the lower curve for d=-0.6 belong to a mini-
mum that appears in this parameter region.

With growing distance from the crystal, the experimental
data approach the theoretical curves. In these regions, the
observed patterns and pattern sizes match the predictions
from the linear stability analysis.

D. Transverse size of patterns

As the actual pattern forming system features two trans-
verse dimensions, we now compare the marginal stability
curves measured under one-dimensional feedback with wave
numbers observed in unconfined patterns. Both are related,
as the modes with the lowest threshold values are expected
to be dominant above threshold too, due to their initial strong
growth (winner-takes-it-all dynamics).

In order to confirm this relation, we first investigate the
dependence of the dominant mode’s wave number on the
coupling strength. Figure 10(a) repeats the threshold around
the absolute minimum at mirror position d=0. Figure 10(b)
exemplarily shows the rise time for modes with correspond-
ing wave numbers at the maximum coupling strength. The
fastest growing and hence dominant mode above threshold
closely corresponds to the mode with the lowest threshold
value. Thus a comparison of the wave numbers of two-
dimensional patterns with the experimental threshold curves
is valid and we expect a close relation.

Figure 11 displays wave number data for two-dimensional
patterns on which experimental data from Fig. 9 is superim-
posed from two different crystal samples with no fitting em-
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FIG. 10. Comparison of mode thresholds and mode growth rates
above threshold. Top, threshold coupling strength values for differ-
ent wave numbers. Bottom, rise time for modes with different wave
numbers. The lowest threshold wave number band is found to be
strongly growing above threshold. All data is given for mirror po-
sition d=0.

ployed. Each dot represents a wave number of a pattern con-
stituent in the unconfined system. The pattern data display
the asymmetry already reported by Honda et al. [6] and the
strong correlation with the position of the minima of the
experimental marginal stability curves (squares) indicates
that the generation of patterns is in fact related to the thresh-
old minima and that both differ from analytical predictions in
the same manner. For several pattern constituents, no corre-
sponding threshold minimum has been found, these wave
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FIG. 11. Wave numbers of two-dimensional patterns (dots) com-
pared with threshold minima in the one-dimensional threshold de-
termination. A strong correlation between both sets of data is found.
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FIG. 12. Threshold curves at a mirror position where the
squeezed hexagonal pattern is observed. The wave numbers of this
pattern are marked and directly correspond to the threshold minima
explaining the generation of a thin nonhexagonal pattern.

numbers may result from two-dimensional interaction of the
active modes’ wave vectors. However, the existence of a spe-
cific class of patterns can be traced directly to the interaction
of independent modes, as we will show in the next section.

E. Implications for nonhexagonal patterns

Over most of the available parameter space, a single ab-
solute minimum threshold exists (e.g., Fig. 7) and hexagonal
patterns incorporating only the wave number corresponding
to that minimum are observed. Usually, the dominance and
stability of hexagonal patterns is explained in terms of a
resonant excitation between three modes with the fundamen-
tal wave number [12]. However, in one part of the multiple
pattern region (about d=-0.75), two equal minima are found
(Fig. 12). At this mirror location, the squeezed hexagonal
pattern (Fig. 2 center) is predominant. This pattern is com-
posed of three wave vectors with two wave numbers, which
coincide with the wave numbers of the threshold minima.
Just as with normal hexagons, this pattern has a geometrical
arrangement of three wave vectors where a resonant excita-
tion of all three wave vectors is possible. Therefore, the ex-
istence of two equal threshold minima should be considered
responsible for the generation of this nonhexagonal pattern
which was to our knowledge unexplained up to now.

IV. CONCLUSION

We presented a detailed experimental analysis of the
modulational instability threshold in a single mirror feedback
system using a photorefractive nonlinearity. A Fourier con-
trol method was used to restrict the system to small bands of
transverse wave numbers and the threshold for the spontane-
ous growth of a modulation was measured subsequently,
scanning the available parameter range. We compared the
results with analytical predictions obtained by means of a
linear stability analysis and found a disagreement for virtual
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mirror positions within the crystal, but otherwise good agree-
ment. The wave number of minimum threshold values are
shown to directly correspond to wave numbers of pattern
constituents. Considering a specific nonhexagonal pattern,
we find cooperation of independent modes to be responsible
for its generation, connecting the observed disagreement be-
tween theory and experiment with the existence of nonhex-
agonal patterns in the multiple pattern region parameter
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range. The reason for the observed inconsistency between
analytical and experimental threshold is unknown at the time
of writing and subject of ongoing research.
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